Understanding M-values

By Erik C. Baker, P.E.

In conjunction with an array of hypothetical "tissue" compartments, gas loading calculations and M-values compose the major elements of the dissolved gas or "Haldanian" decompression model. Through the use of widely-available desktop computer programs, technical divers rely on this model for their decompression safety. A good understanding of M-values can help divers to determine appropriate conservatism factors and evaluate the adequacy of various decompression profiles for a particular dive.

hat are M-values? The term "M-value" was coined by Robert D. Workman in the mid-1960's when he was doing decompression research for the U.S. Navy Experimental Diving Unit (NEDU). Workman was a medical doctor with the rank of Captain in the Medical Corps of the U.S. Navy.

The "M" in M-value stands for "Maximum." For a given ambient pressure, an M-value is defined as the maximum value of inert gas pressure (absolute) that a hypothetical "tissue" compartment can "tolerate" without presenting overt symptoms of decompression sickness (DCS). values are representative limits for the tolerated gradient between inert gas pressure and ambient pressure in each Other terms used for compartment. M-values are "limits for tolerated overpressure," "critical tensions," and "supersaturation limits." The term Mvalue is commonly used by decompression modelers.

HISTORICAL BACKGROUND

In the dissolved gas or "Haldanian" decompression model, gas loading calculations for each hypothetical "tissue" compartment are compared against "ascent limiting criteria" to determine the safe profile for ascent. In the early years of the model, including the method developed by John S. Haldane in 1908, the ascent limiting criteria was in the form of "supersaturation ratios." For example, Haldane found that a diver whose "tissues" were saturated by breathing air at a depth of 33 fsw could ascend directly to the surface (sea level)

without experiencing symptoms of DCS. Because the ambient pressure at 33 fsw depth is twice that at sea level, Haldane concluded that a ratio of 2:1 for tolerated overpressure above ambient could be used as the ascent limiting criteria. This approximate ratio was used by Haldane to develop the first decompression tables. In later years, and up until the 1960's, other ratios were used by various modelers for the different half-time compartments. Most of the U.S. Navy decompression tables were calculated using this supersaturation ratio method.

However, there was a problem. Many of the tables produced by this method were deficient when it came to deeper and longer dives. Robert Workman began a systematic review of the decompression model including previous research that had been performed by the U.S. Navy. He arrived at some important conclusions. First of all, he recognized that Haldane's original ratio of 2:1 (based on air) was really a ratio of 1.58:1 if you considered only the partial pressure of the inert gas in air - nitrogen. [By that time in decompression research it was known that oxygen was not a significant factor in DCS; it was the inert gases like nitrogen and helium that were the culprits.] In his review of the research data, Workman found that the "tissue ratios" for tolerated overpressure varied by half-time compartment and by depth. The data showed that the faster half-time compartments tolerated a greater overpressure ratio than the slower compartments, and that for all compartments the tolerated ratios became less with increasing depth. Then, instead of using ratios, Workman described the maximum tolerated partial pressure of

nitrogen and helium for each compartment at each depth as the "M-value." Next, he made a "linear projection" of these M-values as a function of depth and found that it was a reasonably close match to the actual data. He made the observation that "a linear projection of M-values is useful for computer programming as well."

THE WORKMAN M-VALUES

Workman's presentation of M-values in the form of a linear equation was a significant step in the evolution of the dissolved gas decompression model. His M-values established the concept of a linear relationship between depth pressure [or ambient pressure] and the tolerated inert gas pressure in each "tissue" compartment. This concept is an important element of the present-day dissolved gas model as applied by a variety of modelers.

Workman expressed his M-values in the slope-intercept form of a linear equation (see Figure 1). His surfacing value was designated $M_{\rm O}$ [pronounced "M naught"]. This was the intercept value in the linear equation at zero depth pressure (gauge) at sea level. The slope in the linear equation was designated ΔM [pronounced "delta M"] and represented the change in M-value with change in depth pressure.

THE BÜHLMANN M-VALUES

Professor Albert A. Bühlmann, M.D., began doing decompression research in 1959 in the Laboratory of Hyperbaric Physiology at the University Hospital in Zürich, Switzerland. Bühlmann

continued his research for over thirty years and made a number of important contributions to decompression science. In 1983 he published the first edition (in German) of a successful book entitled Decompression - Decompression Sickness. An English translation of the book was published in 1984. Bühlmann's book was the first nearly complete reference on making decompression calculations that was widely-available to the diving public. As a result, the "Bühlmann algorithm" became the basis for most of the world's in-water decompression computers and do-it-yourself desktop computer programs. Three more editions of the book were published in German in 1990, 1993, and 1995 under the name Tauchmedizin or "Diving Medicine." [An English translation of the 4th Edition of the book (1995) is in preparation for publication].

Bühlmann's method for decompression calculations was similar to the one that Workman had prescribed. This included M-values which expressed a linear relationship between ambient pressure and tolerated inert gas pressure in the hypothetical "tissue" compartments. The major difference between the two approaches was that Workman's M-values were based on depth pressure (i.e. diving from sea level) and Bühlmann's M-values were based on absolute pressure (i.e. for diving at altitude). This makes sense, of course, since Workman was concerned with the diving activities of the U.S. Navy (presumably performed at sea level) while Bühlmann was concerned with diving activities in the high mountain lakes of Switzerland.

Bühlmann published two sets of M-values which have become well-known in diving circles; the ZH-L₁₂ set from the 1983 book, and the ZH-L16 set(s) from the 1990 book (and later editions). The "ZH" in these designations stands for "Zürich" (named after his hometown), the "L" stands for "linear," and the "12" or "16" represents the number of pairs of coefficients (M-values) for the array of half-time compartments for helium and nitrogen. The ZH-L₁₂ set has twelve pairs of coefficients for sixteen half-time compartments and these M-values were determined empirically (i.e. with actual

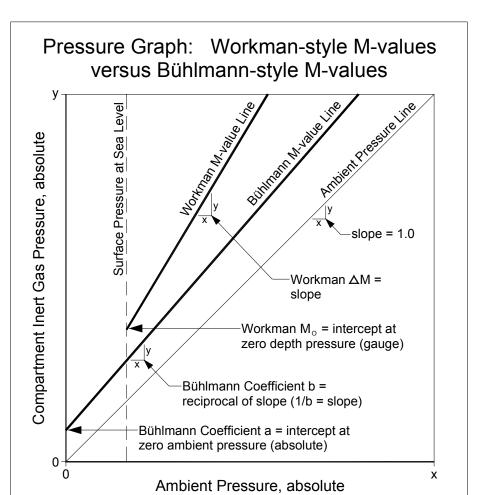


Figure 1

decompression trials). The ZH-L16A set has sixteen pairs of coefficients for sixteen half-time compartments and these M-values were mathematically-derived from the half-times based on the tolerated surplus volumes and solubilities of the inert gases. The ZH-L16A set of Mvalues for nitrogen is further divided into subsets B and C because the mathematically-derived set A was found empirically not to be conservative enough in the middle compartments. The modified set B (slightly more conservative) is suggested for table calculations and the modified set C (somewhat more conservative) is suggested for use with in-water decompression computers which calculate in real-time.

Similar to the Workman M-values, the Bühlmann M-values are expressed in the slope-intercept form of a linear equation (see Figure 1). The Coefficient **a** is the intercept at zero ambient pressure (absolute) and the Coefficient **b** is the reciprocal of the slope. [Note: the Coefficient a does not imply that humans can withstand zero absolute pressure! This is simply a mathematical requirement for the equation. The lower limit for ambient pressure in the application of the Bühlmann M-values is on the order of 0.5 atm/bar.]

DCAP AND DSAT M-VALUES

Many technical divers will recognize the 11F6 set of M-values used by Hamilton Research's Decompression Computation and Analysis Program (DCAP). This set or "matrix" of M-values was determined by Dr. Bill Hamilton and colleagues during development of new air decompression tables for the Swedish Navy. In addition to air diving, the 11F6 M-values have worked well for trimix diving and are the basis for many custom decompression tables in use by technical divers.

Many sport divers are familiar with

the Recreational Dive Planner (RDP) distributed by the Professional Association of Diving Instructors (PADI). The M-values used for the RDP were developed and tested by Dr. Raymond E. Rogers, Dr. Michael R. Powell, and colleagues with Diving Science and Technology Corp. (DSAT), a corporate affiliate of PADI. The DSAT M-values were empirically verified with extensive in-water diver testing and Doppler monitoring.

COMPARISON OF M-VALUES

Tables 1 thru 4 present a comparison of M-values for nitrogen and helium between the various Haldanian decompression algorithms discussed in this article. All M-values are presented in Workman-style format. An evolution or refinement in the M-values is evident from Workman (1965) to Bühlmann (1990). The general trend has been to become slightly more conservative. This trend reflects a more intensive validation process (empirical testing) and includes the use of Doppler ultrasound monitoring for the presence and quantity of "silent bubbles" (bubbles which are detectable in the circulation but are not associated with overt symptoms of decompression sickness).

CONSISTENCY OF M-VALUES

One observation that can be made about the comparison between the M-values of the various algorithms is that there is not a great difference between them. In other words, there appears to be a certain consistency between the values determined by various independent researchers around the globe. This is a good sign as it indicates that the science has determined a relatively consistent threshold for symptoms of decompression sickness across the human population.

FORMAT FOR M-VALUES

M-values are often expressed in the form of a linear equation as in the Workmanstyle or the Bühlmann-style. This format is ideal for computer programming since it allows the M-values to be calculated "on-the-fly" as they are needed. The linear format permits the display of M-value lines on the pressure graph as well.

M-values can also be expressed in the form of a "matrix" or table. This is simply where the M-values for each half-time compartment and each stop depth are pre-calculated and arranged in columns and rows. This format is useful for detailed comparisons and analysis. Some of the early dive computers and desktop computer programs used the table format to "look up" M-values for each stop during the calculation process.

M-VALUE CHARACTERISTICS

M-value sets can be classified into two categories, no-decompression sets and decompression sets. No-decompression M-values are surfacing values only. The DSAT RDP M-values are an example. No-stop dive profiles are designed so that the calculated gas loadings in the compartments do not exceed the surfacing M-values. This allows for direct ascent to the surface at any time during the dive. Some no-decompression

Workman Definitions:

M = tolerated inert gas pressure (absolute) in hypothetical "tissue" compartment

Depth = depth pressure (gauge) measured from surface at sea level

Tolerated Depth = tolerated depth pressure (gauge) measured from surface at sea level

 M_{\odot} = intercept at zero depth pressure (gauge); surfacing M-value

 ΔM = slope of M-value line

Bühlmann Definitions:

P_{t.tol.}i.g. = tolerated inert gas pressure (absolute) in hypothetical "tissue" compartment

P_ti.g. = inert gas pressure (absolute) in hypothetical "tissue" compartment

P_{amb.} = ambient pressure (absolute)

P_{amb.tol.} = tolerated ambient pressure (absolute)

a = intercept at zero ambient
pressure (absolute)

b = reciprocal of slope of M-value line

algorithms account for ascent and descent rates in the calculations.

M-value Mathematics

<u>Linear Equations:</u> y = mx + b format x = (y - b) / m format

Workman-style: $M = \triangle M \cdot Depth + M_o$ Tolerated Depth = $(P - M_o) \triangle M$

Bühlmann-style: $P_{t.tol.}i.g. = (P_{amb.}/b) + a$ $P_{amb.tol.} = (P_{t.i.g.} - a) \cdot b$

Workman to Bühlmann ← Conversions → Bühlmann to Workman

 $a = M_O - \Delta M \cdot P_{amb. (surface at sea level)}$ $M_O = a + P_{amb. (surface at sea level)} / b$

 $b = 1 / \Delta M$ $\Delta M = 1 / b$

Table 1: Comparison of M-values for Nitrogen Between Various Haldanian Decompression Algorithms American System of Pressure Units - feet of sea water (fsw)																				
N	Workman M-values (1965)			Bühlmann ZH-L ₁₂ M-values (1983)				DSAT RDP M-values (1987)			DCAP MF11F6 M-values (1988)			Bühlmann ZH-L16 M-values (1990)						
						•				,				,			Α	<u></u>	C	
Cpt	НТ	M_{O}	Δ M	Cpt	HT	M_{O}	$\triangle M$	Cpt	НТ	M_{O}	Cpt	НТ	M_{O}	Δ M	Cpt	HT	M_{O}	M_{Ω}	M_{O}	ΔM
No.		•	slope	No.		fsw	slope	No.		fsw	No.		fsw	slope	No.		fsw	fsw	fsw	slope
110.	1111111	1044	оюрс	1	2.65		1.2195	110.	1111111	1044	110.	1111111	1044	оюрс	110.	111111	1044	1044	1044	оюрс
					2.05	111.9	1.2190								4	4.0	100.4	100.4	100.4	1 0000
	-	404	4.0						_	00.00	_	_	1010	4.00	1	4.0	106.4	106.4	106.4	1.9082
1	5	104	1.8					1	5	99.08	1	5	104.0	1.30	1b	5.0	97.3	97.3	97.3	1.7928
2	10	88	1.6	2	7.94	89.1	1.2195	2	10	82.63	2	10	80.5	1.05	2	8.0	83.2	83.2	83.2	1.5352
				3	12.2	75.2	1.2121								3	12.5	73.8	73.8	73.8	1.3847
3	20	72	1.5	4	18.5	68.8	1.1976	3	20	66.89					4	18.5	66.8	66.8	66.8	1.2780
				5	26.5	63.5	1.1834	4	30	59.74	3	25	62.3	1.08	5	27.0	62.3	62.3	60.8	1.2306
4	40	56	1.4	6	37	57.3	1.1628	5	40	55.73					6	38.3	58.5	57.4	55.6	1.1857
				7	53	53.2	1.1494	6	60	51.44	4	55	48.6	1.06	7	54.3	55.2	54.1	52.3	1.1504
5	80	54	1.3	8	79	51.9	1.1236	7	80	49.21					8	77.0	52.3	51.7	50.1	1.1223
								8	100	47.85	5	95	45.4	1.04	9	109	49.9	49.9	48.5	1.0999
6	120	52	1.2	9	114	51.9	1.1236	9	120	46.93										
7	160	51	1.15	10	146	50.2	1.0707	10	160	45.78	6	145	44.7	1.02	10	146	48.2	48.2	47.2	1.0844
8	200	51	1.1	11	185	50.2	1.0707	11	200	45.07	7	200	44.1	1.01	11	187	46.8	46.8	46.1	1.0731
9	240	50	1.1	12	238	47.3	1.0593	12	240	44.60	<u> </u>	200	77.1	1.01	12	239	45.6	45.6	45.1	1.0635
19	240			13	304		1.0395	12	240	44.00	8	205	44.0	1.0	13	305				
						42.6		40	200	10.04		285	44.0	1.0			44.5	44.1	44.1	1.0552
				14	397	42.6	1.0395	13	360	43.81	9	385	44.0	1.0	14	390	43.5	43.5	43.1	1.0478
				15	503	42.6	1.0395	14	480	43.40	10	520	44.0	1.0	15	498	42.6	42.6	42.4	1.0414
				16	635	42.6	1.0395								16	635	41.8	41.8	41.8	1.0359
											11	670	43.5	1.0						
Cpt = Compartment HT = Half-time M _O = Surfacing M-value (sea level = 1 atm = 33 fsw = 1.01325 bar) \triangle M = slope of M-value																				
C	ot = Co	ompar	tment	HT	= Half-	-time	M _O = Su	rfacin	g M-v	alue (se	a leve	l = 1 a	atm = 3	3 fsw =	1.01	325 ba	ır) △N	1 = slope	of M-val	ue line
-																	_			
-						f M-va	alues fo	or Ni	troge	en Bet	vee	n Va	rious	Halda	nia	n Dec	_	1 = slope ession /		
-	Table	e 2:	Comp		on of	f M-va Eu	alues fo ropean S	or Ni ysten	troge n of Pr	en Bet essure l	weeı Jnits -	n Va mete	rious rs of se	Halda ea wate	nia	n Dec	compre	ession /	Algoritl	
	Table Wo	e 2:	Comp		on of	f M-va Eu ann ZH	alues fo ropean S I-L ₁₂	or Ni ysten	troge of Pr OSAT	en Bet essure l RDP	vee Inits -	n Va mete DCAP	rious ers of se MM11	Halda ea wate F6	nia	n Dec	Compre	ession /	Algoritl	
	Table Wo	e 2:	Comp		on of	f M-va Eu	alues fo ropean S I-L ₁₂	or Ni ysten	troge of Pr OSAT	en Bet essure l	vee Inits -	n Va mete DCAP	rious rs of se	Halda ea wate F6	nia	n Dec	Bühlm M-va	ession / nann ZH- alues (199	Algoritl L16 90)	
N	Table Wo //-value	e 2: rkman es (19	Comp 1 965)	oaris	on of Bühlm M-valı	f M-va Eu ann Zh ues (19	alues for ropean S I-L ₁₂ 183)	or Ni ystem M-v	troge of Pr OSAT values	en Bet ressure l RDP (1987)	veel	n Va mete DCAP M-valu	rious ers of se MM11 ues (198	Halda ea wate F6 88)	niai r (ms	n Ded w)	Bühlm M-va A	ession / nann ZH- alues (199 B	Algorith L16 90) C	nms
N Cpt	Table Wo I-value HT	e 2: rkman es (19	Comp n 965) ΔM	Cpt	on of Bühlm M-valı HT	f M-va Eu lann Zh ues (19 M _O	alues for ropean String 183)	or Ni ystem M-v Cpt	trogen of ProsAT values	en Bet ressure U RDP (1987) M _O	Veel Jnits - I Cpt	n Va · mete DCAP M-valu HT	rious ers of se MM11 ues (198 M _O	Halda ea wate F6 88)	niai r (ms Cpt	n Dec w) HT	Bühlm M-va A M _O	nann ZH- alues (199 B M _O	Algoritl L16 90) C Mo	nms
N Cpt	Table Wo I-value HT	e 2: rkman es (19	Comp 1 965)	Cpt No.	Bühlm M-valı HT min	f M-va Eu ann Zh ues (19 M _O msw	Alues for opean S I-L ₁₂ 183) AM slope	or Ni ystem M-v Cpt	troge of Pr OSAT values	en Bet ressure l RDP (1987)	Veel Jnits - I Cpt	n Va mete DCAP M-valu	rious ers of se MM11 ues (198	Halda ea wate F6 88)	niai r (ms Cpt	n Ded w)	Bühlm M-va A	ession / nann ZH- alues (199 B	Algorith L16 90) C	nms
N Cpt	Table Wo I-value HT	e 2: rkman es (19	Comp n 965) ΔM	Cpt	on of Bühlm M-valı HT	f M-va Eu lann Zh ues (19 M _O	alues for ropean String 183)	or Ni ystem M-v Cpt	trogen of ProsAT values	en Bet ressure U RDP (1987) M _O	Veel Jnits - I Cpt	n Va · mete DCAP M-valu HT	rious ers of se MM11 ues (198 M _O	Halda ea wate F6 88)	cnia r (ms Cpt No.	n Dec w) HT min	Bühln M-va A M _o msw	nann ZH- alues (199 B Mo msw	AlgoritI L16 90) C M _o msw	AM slope
Cpt No.	Wo -Value HT min	e 2: rkman es (19 M _o msw	Comp 065)	Cpt No.	Bühlm M-valı HT min	f M-va Eu ann Zh ues (19 M _O msw	Alues for opean S I-L ₁₂ 183) AM slope	ystem CM-v Cpt No.	troge of Prosativalues HT min	en Bet essure (RDP (1987) M _O msw	Jnits -	n Va mete DCAP M-valu HT min	rious ers of se MM11 ues (198 M _O msw	Halda ea wate F6 88) AM slope	cpt No.	HT min	Bühlm M-va A M _O msw	nann ZH- alues (199 B Mo msw	Algoriti L16 90) C M _o msw	AM slope
Cpt No.	Wo M-value HT min	e 2: rkman es (19 Mo msw	Comp 065)	Cpt No.	Bühlm M-valı HT min 2.65	F M-va Eu ann Zh ues (19 M _O msw 34.2	Alues for ropean S I-L ₁₂ 183) AM slope 1.2195	ystem Characteristics Contacteristics Contacteristics	troge of Prosat SSAT values HT min	en Bet ressure t RDP (1987) Mo msw	Veel Jnits - I Cpt No.	n Va mete DCAP M-valu HT min	rious ers of se MM11 ues (198 M _O msw	Halda ea wate F6 88) AM slope	Cpt No.	HT min 4.0 5.0	Bühlm M-va A M _o msw 32.4 29.6	nann ZH- alues (199 B Mo msw 32.4 29.6	Algoritl L16 90) C Mo msw 32.4 29.6	△M slope 1.9082 1.7928
Cpt No.	Wo M-value HT min	e 2: rkman es (19 M _o msw	Comp 065)	Cpt No.	Bühlm M-valı HT min 2.65	Momsw 34.2	Alues for opean States 1.2195	ystem CM-v Cpt No.	troge of Prosativalues HT min	en Bet essure (RDP (1987) M _O msw	Jnits -	n Va mete DCAP M-valu HT min	rious ers of se MM11 ues (198 M _O msw	Halda ea wate F6 88) AM slope	cpt No.	HT min	Bühlm M-va A M _o msw 32.4 29.6 25.4	nann ZH- alues (199 B Mo msw	Algoritl L16 90) C Mo msw 32.4 29.6 25.4	AM slope
Cpt No.	Wo M-value HT min	e 2: rkman es (19 Mo msw 31.7 26.8	Comp 065)	Cpt No.	Bühlm M-valı HT min 2.65	Momsw 34.2	Alues for ropean S I-L ₁₂ 183) AM slope 1.2195	ystem Characteristics Contacteristics Contacteristics	troge of Prosat SSAT values HT min	en Bet ressure t RDP (1987) Mo msw	Veel Jnits - I Cpt No.	n Va mete DCAP M-valu HT min	rious ers of se MM11 ues (198 M _O msw	Halda ea wate F6 88) AM slope	Cpt No.	HT min 4.0 5.0	Bühlm M-va A M _o msw 32.4 29.6	nann ZH- alues (199 B Mo msw 32.4 29.6	Algoritl L16 90) C Mo msw 32.4 29.6	△M slope 1.9082 1.7928
Cpt No.	Wo M-value HT min	e 2: rkman es (19 Mo msw	Comp 065)	Cpt No.	Bühlm M-valı HT min 2.65	M _O msw 34.2 27.2 22.9	Alues for opean States 1.2195	ystem Characteristics Contacteristics Contacteristics	troge of Prosat SSAT values HT min	en Bet ressure t RDP (1987) Mo msw	Veel Jnits - I Cpt No.	n Va mete DCAP M-valu HT min	rious ers of se MM11 ues (198 M _O msw	Halda ea wate F6 88) AM slope	Cpt No.	HT min 4.0 5.0 8.0	Bühlm M-va A M _o msw 32.4 29.6 25.4	nann ZH- halues (199 B Mo msw 32.4 29.6 25.4	Algoritl L16 90) C Mo msw 32.4 29.6 25.4	AM slope 1.9082 1.7928 1.5352
Cpt No.	Wo M-value HT min	e 2: rkman es (19 Mo msw 31.7 26.8	Comp 065)	Cpt No.	Bühlm M-valı HT min 2.65 7.94 12.2	M _O msw 34.2 27.2 22.9 21.0	Alues for ropean SH-L ₁₂ 183) AM slope 1.2195 1.2121	Cpt No.	trogen of Proposal National Na	en Bet ressure l RDP (1987) Mo msw	Veel Jnits - I Cpt No.	n Va mete DCAP M-valu HT min	rious ers of se MM11 ues (198 M _O msw	Halda ea water F6 88) AM slope 1.30 1.05	Cpt No.	HT min 4.0 5.0 8.0 12.5	Bühlm M-va A Mo msw 32.4 29.6 25.4 22.5	Passion / mann ZH- alues (199 B Mo msw 32.4 29.6 25.4 22.5	Algoritl L16 00) C Mo msw 32.4 29.6 25.4 22.5	AM slope 1.9082 1.7928 1.5352 1.3847
Cpt No.	Wo M-value HT min	e 2: rkman es (19 Mo msw 31.7 26.8	Comp 065)	Cpt No.	Bühlm M-valu HT min 2.65 7.94 12.2 18.5 26.5	M _o msw 34.2 27.2 22.9 21.0 19.3	Alues for ropean S I-L ₁₂ 183) AM slope 1.2195 1.2121 1.1976 1.1834	Cpt No.	trogen of Property alues HT min 5 10	en Bet ressure l RDP (1987) Mo msw 30.42 25.37 20.54 18.34	Veel Jnits - I Cpt No.	n Va - mete DCAP M-valu HT min 5 10	rious ers of ser MM11 ues (198 M _O msw	Halda ea water F6 88) AM slope 1.30 1.05	Cpt No.	HT min 4.0 5.0 8.0 12.5 18.5 27.0	Bühlm M-va A M _o msw 32.4 29.6 25.4 22.5 20.3 19.0	B M _o msw 32.4 29.6 25.4 22.5 20.3 19.0	Algoritl L16 00) C Mo msw 32.4 29.6 25.4 22.5 20.3	AM slope 1.9082 1.7928 1.5352 1.3847 1.2780 1.2306
Cpt No.	Wo M-value HT min 5 10	e 2: rkman es (19 Mo msw 31.7 26.8	Comp 065)	Cpt No. 1 2 3 4 5 6	Bühlm M-vali HT min 2.65 7.94 12.2 18.5 26.5 37	Momsw 34.2 27.2 22.9 21.0 19.3	Alues for ropean S I-L ₁₂ I-B3) AM slope 1.2195 1.2121 1.1976 1.1834 1.1628	Cpt No.	trogg o of Pr DSAT values HT min 5 10 20 30 40	en Bet ressure l RDP (1987) Mo msw 30.42 25.37 20.54 18.34 17.11	Veel Jnits - I Cpt No.	n Va mete DCAP M-valu HT min 5 10	rious ers of se MM11 ues (198 M _o msw 31.90 24.65	Halda ea wate F6 88) AM slope 1.30 1.05	Cpt No. 1 1b 2 3 4 5 6	HT min 4.0 5.0 8.0 12.5 18.5 27.0 38.3	Bühlm M-va A Mo msw 32.4 29.6 25.4 22.5 20.3 19.0 17.8	B M _o msw 32.4 29.6 25.4 22.5 20.3 19.0 17.5	Algoritl L16 60) C Mo msw 32.4 29.6 25.4 22.5 20.3 18.5 16.9	1.9082 1.7928 1.5352 1.3847 1.2780 1.2306 1.1857
	Word-value HT min 5 10 20	e 2: rkman es (19 Mo msw 31.7 26.8 21.9	Comp 065)	Cpt No. 1 2 3 4 5 6 7	Bühlm M-valu HT min 2.65 7.94 12.2 18.5 26.5 37 53	Momsw 34.2 27.2 22.9 21.0 19.3 17.4 16.2	Alues for ropean S I-L ₁₂ I83) AM slope 1.2195 1.2121 1.1976 1.1834 1.1628 1.1494	Cpt No.	troge of Properties of Propert	en Bet ressure l RDP (1987) Mo msw 30.42 25.37 20.54 18.34 17.11 15.79	Veel Jnits - I Cpt No.	n Va - mete DCAP M-valu HT min 5 10	rious ers of ser MM11 ues (198 M _O msw	Halda ea wate F6 88) AM slope 1.30 1.05	Cpt No. 1 1b 2 3 4 5 6 7	HT min 4.0 5.0 8.0 12.5 18.5 27.0 38.3 54.3	Bühlm M-va A M _O msw 32.4 29.6 25.4 22.5 20.3 19.0 17.8 16.8	B M _o msw 32.4 29.6 25.4 22.5 20.3 19.0 17.5 16.5	Algoritl L16 60) C Mo msw 32.4 29.6 25.4 22.5 20.3 18.5 16.9 15.9	1.9082 1.7928 1.5352 1.3847 1.2780 1.2306 1.1857 1.1504
Cpt No.	Word-value HT min 5 10 20	e 2: rkman es (19 Mo msw 31.7 26.8	Comp 065)	Cpt No. 1 2 3 4 5 6	Bühlm M-vali HT min 2.65 7.94 12.2 18.5 26.5 37	Momsw 34.2 27.2 22.9 21.0 19.3 17.4 16.2	Alues for ropean S I-L ₁₂ I-B3) AM slope 1.2195 1.2121 1.1976 1.1834 1.1628	Cpt No. 1 2 3 4 5 6 7	trogg of Proposal Pro	en Bet ressure l RDP (1987) Mo msw 30.42 25.37 20.54 18.34 17.11 15.79 15.11	Units - I Cpt No.	n Va mete DCAP M-valu HT min 5 10 25	rious ers of se MM11 ues (198 M _o msw 31.90 24.65	Halda ea wate F6 88) AM slope 1.30 1.05 1.08	Cpt No. 1 1b 2 3 4 5 6 7 8	HT min 4.0 5.0 8.0 12.5 18.5 27.0 38.3 54.3 77.0	Bühlm M-va A M _o msw 32.4 29.6 25.4 22.5 20.3 19.0 17.8 16.8 15.9	B Momsw 32.4 29.6 25.4 22.5 20.3 19.0 17.5 16.5	Algoritl L16 O0) C Mo msw 32.4 29.6 25.4 22.5 20.3 18.5 16.9 15.9	1.9082 1.7928 1.5352 1.3847 1.2780 1.2306 1.1857 1.1504 1.1223
Cpt No.	World-value HT min 5 10 20 40	e 2: rkman es (19 M _o msw 31.7 26.8 21.9 17.0	Comp 065) △M slope 1.8 1.6 1.5 1.4	Cpt No. 1 2 3 4 5 6 7 8	Bühlm M-valu HT min 2.65 7.94 12.2 18.5 26.5 37 53 79	M _O Eulann ZHues (19) M _O msw 34.2 27.2 22.9 21.0 19.3 17.4 16.2 15.8	Alues for ropean S I-L ₁₂ 183) AM slope 1.2195 1.2195 1.1976 1.1834 1.1628 1.1494 1.1236	Cpt No. 1 2 3 4 5 6 6 7 8	trogg of Proposition	en Bet ressure l RDP (1987) Mo msw 30.42 25.37 20.54 18.34 17.11 15.79 15.11 14.69	Veel Jnits - I Cpt No.	n Va mete DCAP M-valu HT min 5 10	rious ers of se MM11 ues (198 M _o msw 31.90 24.65	Halda ea wate F6 88) AM slope 1.30 1.05 1.08	Cpt No. 1 1b 2 3 4 5 6 7	HT min 4.0 5.0 8.0 12.5 18.5 27.0 38.3 54.3	Bühlm M-va A M _O msw 32.4 29.6 25.4 22.5 20.3 19.0 17.8 16.8	B M _o msw 32.4 29.6 25.4 22.5 20.3 19.0 17.5 16.5	Algoritl L16 60) C Mo msw 32.4 29.6 25.4 22.5 20.3 18.5 16.9 15.9	1.9082 1.7928 1.5352 1.3847 1.2780 1.2306 1.1857 1.1504
Cpt No.	Wo M-value HT min 5 10 20 40 80	e 2: rkman es (19 Mo msw 31.7 26.8 21.9 17.0 16.4	Comp 1065) △M slope 1.8 1.6 1.5 1.4 1.3	Cpt No. 1 2 3 4 5 6 7 8 9	Bühlm M-valu HT min 2.65 7.94 12.2 18.5 26.5 37 53 79	M _O msw 34.2 27.2 22.9 21.0 19.3 17.4 16.2 15.8	Alues for ropean S I-L ₁₂ I83) AM slope 1.2195 1.2121 1.1976 1.1834 1.1628 1.1494 1.1236	Cpt No. 1 1 2 3 4 5 6 7 8 9 9	trogen of Proposition	en Bet ressure l RDP (1987) Mo msw 30.42 25.37 20.54 18.34 17.11 15.79 15.11 14.69 14.41	Veel Jnits - Cpt No. 1 2 3 4	n Va mete DCAP M-valu HT min 5 10 25 55	msw 31.90 24.65	Halda ea wate F6 88) AM slope 1.30 1.05 1.08 1.06	Cpt No. 1 1b 2 3 4 5 6 7 8 9	HT min 4.0 5.0 8.0 12.5 18.5 27.0 38.3 54.3 77.0 109	Bühlm M-va A Mo msw 32.4 29.6 25.4 22.5 20.3 19.0 17.8 16.8 15.9 15.2	B M _O msw 32.4 29.6 25.4 22.5 20.3 19.0 17.5 16.5 15.7	Algoritl L16 B0) C Mo msw 32.4 29.6 25.4 22.5 20.3 18.5 16.9 15.9 15.2 14.7	1.9082 1.7928 1.5352 1.3847 1.2780 1.2306 1.1857 1.1504 1.1223 1.0999
1 1 2 3 4 5 6 7	Wo M-value HT min 5 10 20 40 80 120 160	e 2: rkman es (19 Mo msw 31.7 26.8 21.9 17.0 16.4 15.8 15.5	Comp 1065) AM slope 1.8 1.6 1.5 1.4 1.3 1.2 1.15	Cpt No. 1 2 3 4 5 6 7 8 9 10	Bühlm M-valu HT min 2.65 7.94 12.2 18.5 26.5 37 53 79 114 146	Momsw 34.2 27.2 22.9 21.0 19.3 17.4 16.2 15.8 15.8	Alues for ropean S I-L ₁₂ I-B3) AM slope 1.2195 1.2121 1.1976 1.1834 1.1628 1.1494 1.1236 1.0707	Cpt No. 1 2 3 4 5 6 7 8 9 10	troge of Proposition	en Bet ressure l RDP (1987) Mo msw 30.42 25.37 20.54 18.34 17.11 15.79 15.11 14.69 14.41 14.06	Units - Cpt No.	n Va - mete DCAP M-valu HT min 5 10 25 55 95	msw 13.90 14.78 13.92 13.66	Halda ea wate F6 88) AM slope 1.30 1.05 1.08 1.06 1.04	Cpt No. 1 1b 2 3 4 5 6 7 8 9 10	HT min 4.0 5.0 8.0 12.5 18.5 27.0 38.3 54.3 77.0 109	Bühlm M-va A M _O msw 32.4 29.6 25.4 22.5 20.3 19.0 17.8 16.8 15.9 15.2	B Mo msw 32.4 29.6 25.4 22.5 20.3 19.0 17.5 16.5 15.7 15.2	Algoritl L16 B0) C Mo msw 32.4 29.6 25.4 22.5 20.3 18.5 16.9 15.9 15.2 14.7	1.9082 1.7928 1.5352 1.3847 1.2780 1.2306 1.1857 1.1504 1.1223 1.0999
Cpt No. 1 2 3 4 5 6 7 8	Word-value HT min 5 10 20 40 80 120 160 200	msw 31.7 26.8 21.9 17.0 16.4 15.8 15.5 15.5	Comp 1065) AM slope 1.8 1.6 1.5 1.4 1.3 1.2 1.15 1.1	Cpt No. 1 2 3 4 5 6 7 8 9 10 11	Bühlm M-valu HT min 2.65 7.94 12.2 18.5 26.5 37 53 79 114 146 185	Momsw 34.2 27.2 22.9 21.0 19.3 17.4 16.2 15.8 15.8	Alues for ropean S I-L ₁₂ I-B3) AM slope 1.2195 1.2121 1.1976 1.1834 1.1628 1.1494 1.1236 1.0707 1.0707	Cpt No. 1 2 3 4 5 6 7 8 9 10 11	trogen of Prosent Programmin 5 10 20 30 40 60 80 100 120 160 200	en Bet ressure l RDP (1987) Mo msw 30.42 25.37 20.54 18.34 17.11 15.79 15.11 14.69 14.41 14.06 13.84	Veel Jnits - Cpt No. 1 2 3 4	n Va - mete DCAP M-valu HT min 5 10 25 55 95	msw 31.90 24.65	Halda ea wate F6 88) AM slope 1.30 1.05 1.08 1.06 1.04	Cpt No. 1 1b 2 3 4 5 6 7 8 9 10 11	HT min 4.0 5.0 8.0 12.5 18.5 27.0 38.3 54.3 77.0 109 146 187	Bühlm M-va A Mo msw 32.4 29.6 25.4 22.5 20.3 19.0 17.8 16.8 15.9 15.2 14.6 14.2	B M _o msw 32.4 29.6 25.4 22.5 20.3 19.0 17.5 16.5 15.7 15.2	Algoritl L16 30) C Mo msw 32.4 29.6 25.4 22.5 20.3 18.5 16.9 15.9 15.2 14.7 14.3 14.0	1.9082 1.7928 1.5352 1.3847 1.2780 1.2306 1.1857 1.1504 1.1223 1.0999 1.0844 1.0731
1 1 2 3 4 5 6 7	Word-value HT min 5 10 20 40 80 120 160 200	e 2: rkman es (19 Mo msw 31.7 26.8 21.9 17.0 16.4 15.8 15.5	Comp 1065) AM slope 1.8 1.6 1.5 1.4 1.3 1.2 1.15 1.1	Cpt No. 1	Bühlm M-valu HT min 2.65 7.94 12.2 18.5 26.5 37 53 79 114 146 185 238	Momsw 34.2 27.2 22.9 21.0 19.3 17.4 16.2 15.8 15.3 15.3	Alues for ropean S I-L ₁₂ I-B3) AM slope 1.2195 1.2121 1.1976 1.1834 1.1628 1.1494 1.1236 1.0707 1.0707 1.0593	Cpt No. 1 2 3 4 5 6 7 8 9 10	trogen of Prosent Programmin 5 10 20 30 40 60 80 100 120 160 200	en Bet ressure l RDP (1987) Mo msw 30.42 25.37 20.54 18.34 17.11 15.79 15.11 14.69 14.41 14.06	Veel	n Va - metec DCAP M-valu HT min 5 10 25 55 95 145 200	rious ers of se MM11 ues (198 M _o msw 31.90 24.65 19.04 14.78 13.92 13.66 13.53	Halda ea wate F6 88) AM slope 1.30 1.05 1.08 1.06 1.04 1.02 1.01	Cpt No. 1 1b 2 3 4 5 6 7 8 9 10 11 12	HT min 4.0 5.0 8.0 12.5 18.5 27.0 38.3 54.3 77.0 109 146 187 239	Bühlm M-va A Mo msw 32.4 29.6 25.4 22.5 20.3 19.0 17.8 16.8 15.9 15.2 14.6 14.2 13.9	B M _o msw 32.4 29.6 25.4 22.5 20.3 19.0 17.5 16.5 15.7 15.2 14.6 14.2 13.9	Algoritl L16 30) C Mo msw 32.4 29.6 25.4 22.5 20.3 18.5 16.9 15.9 15.2 14.7 14.3 14.0 13.7	1.9082 1.7928 1.5352 1.3847 1.2780 1.2306 1.1857 1.1504 1.1223 1.0999 1.0844 1.0731 1.0635
Cpt No. 1 2 3 4 5 6 7 8	Word-value HT min 5 10 20 40 80 120 160 200	msw 31.7 26.8 21.9 17.0 16.4 15.8 15.5 15.5	Comp 1065) AM slope 1.8 1.6 1.5 1.4 1.3 1.2 1.15 1.1	Cpt No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Bühlm M-valu HT min 2.65 7.94 12.2 18.5 26.5 37 53 79 114 146 185 238 304	Momsw 34.2 27.2 22.9 21.0 19.3 17.4 16.2 15.8 15.8 15.3 14.4 12.9	Alues for ropean S I-L ₁₂ I-B3) AM slope 1.2195 1.2121 1.1976 1.1834 1.1628 1.1494 1.1236 1.0707 1.0707 1.0593 1.0395	Cpt No. Cpt No. 1 2 3 4 5 6 7 8 9 10 11 12	troge of Prosent alues HT min 5 10 20 30 40 60 80 100 120 160 200 240	Bet ressure to RDP (1987) Mo msw 30.42 25.37 20.54 18.34 17.11 15.79 15.11 14.69 14.41 14.06 13.84 13.69	Veel	n Va meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter meter	msw 31.90 24.65 13.66 13.50	Halda ea wate F6 88) AM slope 1.30 1.05 1.06 1.04 1.02 1.01 1.0	Cpt No. 1 1b 2 3 4 5 6 7 8 9 10 11 12 13	HT min 4.0 5.0 8.0 12.5 18.5 27.0 38.3 54.3 77.0 109 146 187 239 305	Bühlm M-va A Mo msw 32.4 29.6 25.4 22.5 20.3 19.0 17.8 16.8 15.9 15.2 14.6 14.2 13.9 13.5	B Mo msw 32.4 29.6 25.4 22.5 20.3 19.0 17.5 16.5 15.7 15.2 14.6 14.2 13.9 13.4	Algoritl L16 30) C Mo msw 32.4 29.6 25.4 22.5 20.3 18.5 16.9 15.9 15.2 14.7 14.3 14.0 13.7 13.4	1.9082 1.7928 1.5352 1.3847 1.2780 1.2306 1.1857 1.1504 1.1223 1.0999 1.0844 1.0731 1.0635 1.0552
Cpt No. 1 2 3 4 5 6 7 8	Word-value HT min 5 10 20 40 80 120 160 200	msw 31.7 26.8 21.9 17.0 16.4 15.8 15.5 15.5	Comp 1065) AM slope 1.8 1.6 1.5 1.4 1.3 1.2 1.15 1.1	Cpt No. 1	Bühlm M-valu HT min 2.65 7.94 12.2 18.5 26.5 37 53 79 114 146 185 238 304 397	Momsw 34.2 27.2 22.9 21.0 19.3 17.4 16.2 15.8 15.8 15.3 14.4 12.9 12.9	Alues for ropean S I-L ₁₂ 183) AM slope 1.2195 1.2195 1.2121 1.1976 1.1834 1.1628 1.1494 1.1236 1.0707 1.0707 1.0593 1.0395 1.0395	Cpt No. Cpt No. 1 2 3 4 5 6 7 8 9 10 11 12 13	trogen of Proposition	msw 30.42 25.37 20.54 18.34 17.11 15.79 15.11 14.69 14.41 14.06 13.84 13.69	Neel	n Va - mete DCAP M-valu HT min - 5 10 - 25 - 55 - 95 - 145 - 200 - 285 - 385	Momsw 31.90 24.65 19.04 14.78 13.92 13.66 13.50 13.50	Halda ea wate F6 88) AM slope 1.30 1.05 1.08 1.04 1.02 1.01 1.0 1.0 1.0	Cpt No. 1 1 b 2 3 4 5 6 7 8 9 10 11 12 13 14	HT min 4.0 5.0 8.0 12.5 18.5 27.0 38.3 54.3 77.0 109 146 187 239 305 390	Bühlm M-va A Mo msw 32.4 29.6 25.4 22.5 20.3 19.0 17.8 16.8 15.9 15.2 14.6 14.2 13.9 13.5 13.2	B Mo msw 32.4 29.6 25.4 22.5 20.3 19.0 17.5 16.5 15.7 15.2 14.6 14.2 13.9 13.4 13.2	Algoritl L16 BO) C Mo msw 32.4 29.6 25.4 22.5 20.3 18.5 16.9 15.9 15.2 14.7 14.3 14.0 13.7 13.4 13.1	1.9082 1.7928 1.5352 1.3847 1.2780 1.2306 1.1857 1.1504 1.1223 1.0999 1.0844 1.0731 1.0635 1.0552 1.0478
Cpt No. 1 2 3 4 5 6 7 8	Word-value HT min 5 10 20 40 80 120 160 200	msw 31.7 26.8 21.9 17.0 16.4 15.8 15.5 15.5	Comp 1065) AM slope 1.8 1.6 1.5 1.4 1.3 1.2 1.15 1.1	Cpt No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Bühlm M-valu HT min 2.65 7.94 12.2 18.5 26.5 37 53 79 114 146 185 238 304	Momsw 34.2 27.2 22.9 21.0 19.3 17.4 16.2 15.8 15.8 15.3 14.4 12.9 12.9	Alues for ropean S I-L ₁₂ I-B3) AM slope 1.2195 1.2121 1.1976 1.1834 1.1628 1.1494 1.1236 1.0707 1.0707 1.0593 1.0395	Cpt No. Cpt No. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14	trogen of Proposition	Bet ressure to RDP (1987) Mo msw 30.42 25.37 20.54 18.34 17.11 15.79 15.11 14.69 14.41 14.06 13.84 13.69	Veel	n Va - mete DCAP M-valu HT min - 5 10 - 25 - 55 - 95 - 145 - 200 - 285 - 385	msw 31.90 24.65 13.66 13.50	Halda ea wate F6 88) AM slope 1.30 1.05 1.06 1.04 1.02 1.01 1.0	Cpt No. 1 1b 2 3 4 5 6 7 8 9 10 11 12 13	HT min 4.0 5.0 8.0 12.5 18.5 27.0 38.3 54.3 77.0 109 146 187 239 305 390 498	Bühlm M-va A Mo msw 32.4 29.6 25.4 22.5 20.3 19.0 17.8 16.8 15.9 15.2 14.6 14.2 13.9 13.5	B Mo msw 32.4 29.6 25.4 22.5 20.3 19.0 17.5 16.5 15.7 15.2 14.6 14.2 13.9 13.4	Algoritl L16 30) C Mo msw 32.4 29.6 25.4 22.5 20.3 18.5 16.9 15.9 15.2 14.7 14.3 14.0 13.7 13.4	1.9082 1.7928 1.5352 1.3847 1.2780 1.2306 1.1857 1.1504 1.1223 1.0999 1.0844 1.0731 1.0635 1.0552

Cpt = Compartment HT = Half-time M_☉ = Surfacing M-value (sea level = 10 msw = 1.0 bar) ΔM = slope of M-value line

11 670 13.30 1.0

16 635

12.7

12.7

12.7 1.0359

16 635

12.9 1.0395

Table 3: Comparison of M-values for Helium
Between Various Haldanian Decompression Algorithms
American System of Pressure Units - feet of sea water (fsw)

	American System of Fressure Offics - feet of sea water (18w)												
	Wo	rkmar	1		Bühlm	nann ZH	-L ₁₂	Bühlmann ZH-L16A					
N	1-value	es (19	965)		M-val	lues (19	83)	M-values (1990)					
Cpt	HT	M_{o}	$\triangle M$	Cpt	HT	M_{o}	$\triangle M$	Cpt	HT	M_{o}	ΔM		
No.	min	fsw	slope	No. min for		fsw	slope	No.	min	fsw	slope		
				1	1.0	111.9	1.2195	1	1.51	134.5	2.3557		
								1b	1.88	121.9	2.0964		
				2	3.0	89.1	1.2195	2	3.02	102.5	1.7400		
1	5	86	1.5	3	4.6	75.2	1.2121	3	4.72	89.4	1.5321		
				4	7.0	68.8	1.1976	4	6.99	79.7	1.3845		
2	10	74	1.4	5	10	63.5	1.1834	5	10.21	73.6	1.3189		
				6	14	57.3	1.1628	6	14.48	68.2	1.2568		
3	20	66	1.3	7	20	53.2	1.1494	7	20.53	63.7	1.2079		
				8	30	51.9	1.1236	8	29.11	59.8	1.1692		
4	40	60	1.2	9	43	51.9	1.1236	9	41.20	57.1	1.1419		
				10	55	52.4	1.0799	10	55.19	55.1	1.1232		
5	80	56	1.2	11	70	52.4	1.0799	11	70.69	54.0	1.1115		
				12	90	52.4	1.0799	12	90.34	53.3	1.1022		
6	120	54	1.2	13	115	52.4	1.0799	13	115.29	53.1	1.0963		
7	160	54	1.1	14	150	52.4	1.0799	14	147.42	52.8	1.0904		
8	200	53	1.0	15	190	52.4	1.0799	15	188.24	52.6	1.0850		
9	240	53	1.0	16	240	52.4	1.0799	16	240.03	52.3	1.0791		
	Cnt -	Comr	artman	+	HT - Half time AM - slope of M value line								

Cpt = Compartment HT = Half-time $\triangle M$ = slope of M-value line M_O = Surfacing M-value (sea level = 1 atm = 33 fsw = 1.01325 bar)

Table 4: Comparison of M-values for Helium Between Various Haldanian Decompression Algorithms European System of Pressure Units - meters of sea water (msw)

	Wo	rkmar)		Bühln	nann Z⊦	I-L ₁₂	Bühlmann ZH-L16A					
N	1-valu	es (19	965)		M-val	lues (19	83)	M-values (1990)					
Cpt	HT	Μo	ΔM	Cpt	HT	Mo	ΔM	Cpt	HT	Mo	ΔM		
No.	min	msw	slope	No.	min	msw	slope	No.	min	msw	slope		
				1	1.0	34.2	1.2195	1	1.51	41.0	2.3557		
								1b	1.88	37.2	2.0964		
				2	3.0	27.2	1.2195	2	3.02	31.2	1.7400		
1	5	26.2	1.5	3	4.6	22.9	1.2121	3	4.72	27.2	1.5321		
				4	7.0	21.0	1.1976	4	6.99	24.3	1.3845		
2	10	22.5	1.4	5	10	19.3	1.1834	5	10.21	22.4	1.3189		
				6	14	17.4	1.1628	6	14.48	20.8	1.2568		
3	20	20.1	1.3	7	20	16.2	1.1494	7	20.53	19.4	1.2079		
				8	30	15.8	1.1236	8	29.11	18.2	1.1692		
4	40	18.3	1.2	9	43	15.8	1.1236	9	41.20	17.4	1.1419		
				10	55	15.9	1.0799	10	55.19	16.8	1.1232		
5	80	17.0	1.2	11	70	15.9	1.0799	11	70.69	16.4	1.1115		
				12	90	15.9	1.0799	12	90.34	16.2	1.1022		
6	120	16.4	1.2	13	115	15.9	1.0799	13	115.29	16.1	1.0963		
7	160	16.4	1.1	14	150	15.9	1.0799	14	147.42	16.1	1.0904		
8	200	16.1	1.0	15	190	15.9	1.0799	15	188.24	16.0	1.0850		
9	240	16.1	1.0	16	240	15.9	1.0799	16	240.03	15.9	1.0791		
	Cnt =	Comp	artmon	t	HT =	Half-tin	10 /	M = slone of M-value line					

Cpt = Compartment HT = Half-time \triangle M = slope of M-value line M_O = Surfacing M-value (sea level = 10 msw = 1.0 bar)

Decompression M-values are characterized by having a slope parameter which determines the change in M-value with change in ambient The value of the slope pressure. parameter will vary depending on the half-time of the hypothetical "tissue" compartment. Generally, faster half-time compartments will have a greater slope than slower half-time compartments. This reflects the observation that faster compartments tolerate greater overpressure than slower compartments. If the slope is greater than 1.0 then the M-value line "expands" on the pressure graph and that compartment will tolerate greater overpressure gradients with increasing depth. A fixed slope of 1.0 means that the compartment will tolerate the same overpressure gradient regardless of depth. In all cases, the value of the slope can never be less than 1.0. Otherwise, the M-value line would cross under the ambient pressure line at some point and this would represent an "illogical" situation whereby the compartment could not tolerate even the ambient pressure.

THE AMBIENT PRESSURE LINE

The ambient pressure line is an all-important reference line on the pressure graph. Passing through the origin, it has a slope of 1.0 and simply represents the collection of points where the compartment inert gas loading will be equal to ambient pressure. This is important because when the inert gas loading in a compartment goes above the ambient pressure line, an overpressure gradient is created. An M-value line represents the established limit for tolerated overpressure gradient above the ambient pressure line.

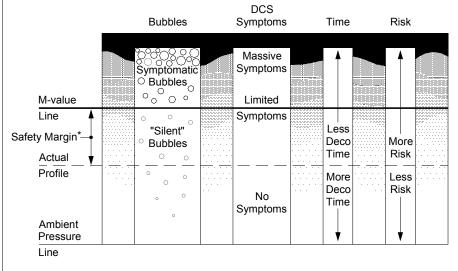
THE DECOMPRESSION ZONE

The "decompression zone" is the region on the pressure graph between the ambient pressure line and the M-value line (see Figure 3). Within the context of the dissolved gas model, this zone represents the functional area in which decompression takes place. In theory, a positive gradient above ambient pressure is desireable in order for a compartment to "off-gas" or "decompress." In some

instances, such as with a high fraction of oxygen in the mix, a compartment will be able to off-gas even though the total inert gas partial pressure is less than ambient pressure. An "efficient" decompression profile is characterized by leading compartment gas loadings which plot within the decompression zone. The gas loadings for various half-time compartments will cross into and then out of the decompression zone during the decompression profile depending upon which compartment is "leading" or "controlling" at the time. Generally, the faster compartments will cross into the decompression zone first and be leading (gas loadings closest to M-value lines) and then the rest of the decompression profile will be controlled by the slower compartments in sequence.

MULTIPLE INERT GASES

Present-day dissolved gas models employ a concept for multiple inert gases which states that the total inert gas pressure in a hypothetical "tissue" compartment is the sum of the partial pressures of the inert gases present in the compartment, even though the various inert gases each have a different half-time for that compartment.


Mixed gas decompression algorithms must deal with more than one inert gas in the breathing mix, such as helium and nitrogen in trimix. M-values for this situation are handled differently by the various algorithms. Some methodologies use the same M-values for both nitrogen and helium; usually they are based on the M-values for nitrogen. In the Bühlmann algorithm, an intermediate M-value is calculated which is an adjustment between the separate M-values for nitrogen and helium based on the proportion of these inert gases present in the compartment. In the M-value linear equation, the Coefficient a (He+N₂) and the Coefficient **b** (He+N₂) are computed in accordance with the partial pressures of helium (PHe) and nitrogen (PN₂) as follows:

[
$$\mathbf{a}$$
 (He)·PHe + \mathbf{a} (N₂)·PN₂]/[PHe + PN₂];
 \mathbf{b} (He+N₂) =

 $a (He+N_2) =$

 $[\mathbf{b} (He) \cdot PHe + \mathbf{b} (N_2) \cdot PN_2] / [PHe + PN_2].$

An M-value Concept: A solid line drawn through a fuzzy, gray area; a representative threshold beyond which a high frequency of symptoms of decompression sickness (DCS) can be expected in a majority of divers

* varies according to individual disposition, physical condition, acceptable risk, etc.

Figure 2

WHAT DO M-VALUES REPRESENT?

A misconception among some divers is that M-values represent a hard line between "getting the bends" and "not getting the bends." This might explain why some divers routinely push the limits of their tables or dive computer. The experience of diving medicine has shown that the established limits (M-values) are sometimes inadequate. The degree of inadequacy is seen to vary with the individual and the situation. Accordingly, it may be more appropriate to describe an M-value as "a solid line drawn through a fuzzy, gray area" (see Figure 2). The reasons for this lack of definitude involve complex human physiology, variations among individuals, and predisposing factors for decompression sickness.

Overall, the dissolved gas model has worked well for divers and the knowledge base has continued to grow. For example, it was originally presumed that all inert gas had to remain dissolved in solution and that any bubbles were indicative of DCS. However, we now know that silent bubbles are present even during symptom-free dives. Thus, the reality is that there is a combination of

two conditions during a dive - most of the inert gas presumably in solution and some of the inert gas out of solution as bubbles. An M-value, therefore, represents not only a tolerable overpressure gradient, but a tolerable amount of bubbles as well.

M-values are empirically verified. meaning that actual decompression trials are carried out with human subjects. These tests are conducted with a relatively small number of subjects intended to represent the much larger population of divers. Even though good data is obtained about the approximate threshold for symptoms of decompression sickness (M-values), this process cannot accurately predict or guarantee an absolute threshold for everyone. Also, we know from experience that certain factors are predisposing for decompression sickness: lack of physical conditioning, fattiness, fatigue, drugs/alcohol, dehydration, overexertion, very cold water, open patent foramen ovale (PFO), etc. Individual susceptibility can vary on a daily basis as well.

M-VALUES AND CONSERVATISM

Limited symptoms, if any, and a reasonably low level of risk are associated with M-values. This criteria,

however, may not be entirely acceptable to all divers. Many divers would like to be in the range of "no symptoms" and "very low level of risk" when it comes to their decompression profiles. Fortunately, it is well understood among decompression modelers and programmers that calculations based on the established M-values alone cannot produce sufficiently reliable decompression tables for all individuals and all scenarios. This is why decompression programs provide for a means of introducing conservatism into the calculations.

Some of the methodologies include increasing the inert gas fractions used in the calculations, applying a depth safety factor which calculates for a deeper-thanactual dive depth, calculating for a longer-than-actual bottom time, and adjusting the half-times to be asymmetrical during off-gassing (slower). Some programs use more than one of these methods combined. These methodologies for conservatism are effective when properly applied. The degree of "effectiveness" is usually gauged by divers in terms of how much longer and deeper the decompression profiles become, and through individual experience with the outcome of the profiles.

M-VALUE RELATIONSHIPS

Some fundamental relationships involving M-values and decompression calculations are indicated on the pressure graph in Figure 3. The Percent M-value calculation has been used by various decompression modelers over the years. Professor Bühlmann, for example, evaluated many of his decompression trials on a Percent M-value basis and reported the data as such in his book(s).

The Percent M-value Gradient calculation is a measure of how far a decompression profile has entered into the "decompression zone." 0% M-value Gradient is at the ambient pressure line and represents the bottom of the decompression zone. 100% M-value Gradient is at the M-value line and represents the top of the decompression zone.

ANALYSIS OF PROFILES

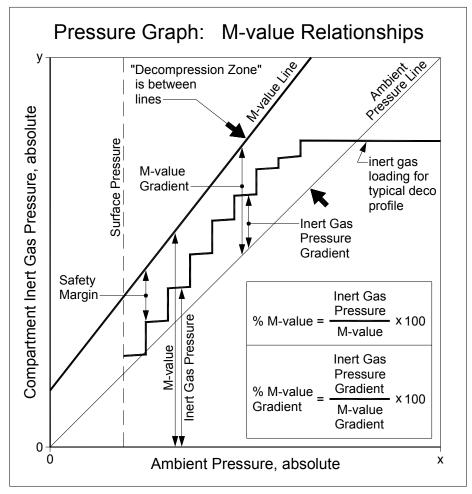


Figure 3

Many divers would like to know precisely what the effect is of the conservatism factors in their desktop decompression program(s). They realize that longer and deeper profiles are generated with increasing conservatism factors, but more fundamental information is desired.

Both the Percent M-value and Percent M-value Gradient relationships are useful for the analysis and evaluation of decompression profiles. Using a standard set of reference M-values, different profiles can be evaluated on a consistent basis. This includes comparison of profiles generated by entirely different programs, algorithms, and decompression models.

UNIVERSAL REFERENCE VALUES

The Bühlmann ZH-L16 M-values are employed in most, if not all, of the desktop decompression programs in use by technical divers. These M-values were developed and tested for a broad

range of ambient pressure exposures; from high altitude diving to deep sea diving. When used with appropriate conservatism, they have proven to be "reliable" for technical diving (to the extent that something can be reliable in an inexact science). They have become the de facto world-wide standard that can serve as universal reference values for the comparison and evaluation of decompression profiles.

It is a relatively easy task for programmers to include Percent M-value and Percent M-value Gradient calculations in summary form with the decompression profiles. Table 5 is an example of this and shows the effect of conservatism factors used in a commercially-available desktop decompression program. At 0% Conservatism Factor, the decompression profile is in the 90% M-value range and has entered approximately 70% into the decompression zone (70% M-value Gradient). It is evident that this program employs a level of baseline conservatism

Table 5: Effect of Conservatism Factors in a Commercially-Available Program on Decompression Profiles Referenced to Bühlmann ZH-L16 M-values (ZH-L16A Helium, ZH-L16B Nitrogen)

15/40 Trimix Dive (15% O_2 / 40% He) to 250 fsw for 30 min. Deco mixes - Nitrox 36% at 110 fsw, 100% O_2 at 20 fsw

	0% Cor	nservatism F	actor	5	50% Co	nservatism f	actor	100% Conservatism Factor			
Deco	Run	Maximum *	Maximum * % M-value	Deco	Run	Maximum *	Maximum * % M-value	Deco	Run	Maximum *	Maximum * % M-value
Stop	Time	% M-value	Gradient	Stop	Time	% M-value	Gradient	Stop	Time	% M-value	Gradient
(fsw)	(min)	(Cpt No.)	(Cpt No.)	(fsw)	(min)	(Cpt No.)	(Cpt No.)	(fsw)	(min)	(Cpt No.)	(Cpt No.)
,	,	,	,		,	,	,	140	35	74.3% (4)	29.3% (3)
								130	37	76.0% (4)	31.0% (3)
				120	35	81.6% (4)	47.0% (3)	120	40	77.4% (4)	33.9% (4)
110	36	85.8% (4)	59.4% (4)	110	38	84.5% (4)	55.7% (4)	110	43	77.6% (4)	35.5% (4)
				100	39	79.0% (5)	39.4% (4)	100	45	75.4% (5)	22.6% (4)
90	38	89.0% (4)	69.3% (4)	90	41	82.1% (5)	46.0% (4)	90	49	76.5% (6)	26.3% (5)
80	41	89.5% (5)	69.1% (4)	80	45	83.2% (5)	49.1% (5)	80	53	76.3% (6)	20.3% (5)
70	44	88.3% (5)	65.6% (5)	70	49	82.2% (6)	42.5% (5)	70	58	77.0% (6)	22.1% (6)
60	48	89.8% (6)	67.2% (6)	60	55	83.2% (6)	45.1% (6)	60	68	78.2% (7)	24.9% (6)
50	55	91.1% (6)	72.2% (6)	50	64	83.1% (7)	44.1% (6)	50	78	76.9% (7)	17.6% (7)
40	64	90.3% (7)	67.7% (7)	40	75	83.1% (7)	42.8% (7)	40	96	78.4% (8)	22.5% (7)
30	79	90.7% (7)	70.7% (7)	30	95	84.5% (8)	46.0% (7)	30	124	78.3% (8)	22.4% (8)
20	94	90.9% (8)	70.7% (8)	20	113	84.2% (9)	47.1% (8)	20	147	78.9% (9)	24.4% (9)
10	119	91.1% (9)	72.2% (9)	10	144	85.8% (10)	51.7% (10)	10	189	81.2% (11)	32.6% (10)
0	120	93.6% (11)	80.2% (11)	0	145	88.6% (12)	62.6% (12)	0	190	84.9% (13)	46.6% (13)
* Upon	Arrival a	t the Stop									

since none of the values reaches 100%. At 50% Conservatism Factor (which is recommended in the user's manual), the profile is in the 85% M-value range and has entered approximately 40-50% into the decompression zone. At 100% Conservatism Factor, the profile is in the 77% M-value range and has entered approximately 20-35% into the decompression zone. Note that the values given in Table 5 are upon arrival the respective stops which is the worstcase condition. This correlates with the edges of the "stair-steps" in the gas loading profile on the pressure graph (see example in Figure 3). The highest values across all profiles are calculated upon arrival at the surface which illustrates why a very slow final ascent from the last decompression stop to the surface is always prudent.

MARGIN OF SAFETY

Using the M-value relationships and a standard set of reference M-values, divers can determine personal decompression limits which are both well-defined and transportable. The margin of safety selected will depend on individual disposition and prior experience with profiles. An honest assessment of one's

fitness for decompression diving is always in order. For example, this author/diver (an office worker) has chosen a personal limit of 85% M-value and 50-60% M-value Gradient for typical trimix dives.

To ensure a fixed margin of safety, a decompression profile can be calculated directly to a predetermined percentage of the M-value Gradient. The advantage of this approach is complete consistency across the entire ambient pressure range and precise control over the resultant profile.

About the Author

Erik C. Baker is an electrical engineer with a consulting engineering firm in Florida. He pursues research into decompression and diving physiology as a hobby, and has developed several FORTRAN computer programs for decompression calculation and analysis. Erik is a certified cave diver and trimix diver.

Decompression References:

Bennett PB, Elliott DH, eds. 1993. The Physiology and Medicine of Diving. London: WB Saunders.

Boycott AE, Damant GCC, Haldane JS. 1908. The prevention of compressed air illness. J Hyg (London) 8:342-443.

Bühlmann, AA. 1984. Decompression-Decompression Sickness. Berlin: Springer-Verlag.

Bühlmann, AA. 1995. Tauchmedizin. Berlin: Springer-Verlag.

Hamilton RW, Muren A, Röckert H, Örnhagen H. 1988. Proposed new Swedish air decompression tables. In: Shields TG, ed. XIVth Annual Meeting of the EUBS. European Undersea Biomedical Society. Aberdeen: National Hyperbaric Center.

Hamilton RW, Rogers RE, Powell MR, Vann RD. 1994. Development and validation of no-stop decompression procedures for recreational diving: The DSAT Recreational Dive Planner. Santa Ana, CA: Diving Science and Technology Corp.

Schreiner HR, Kelley PL. 1971. A pragmatic view of decompression. In: Lambertsen CJ, ed. Underwater

Physiology IV. New York: Academic Press.

Wienke BR. 1991. Basic decompression theory and application. Flagstaff, AZ: Best.

Wienke BR. 1994. Basic diving physics and applications. Flagstaff, AZ: Best.

Workman RD. 1965. Calculation of decompression schedules for nitrogenoxygen and helium-oxygen dives. Research Report 6-65. Washington: Navy Experimental Diving Unit.

Workman RD. 1969. American decompression theory and practice. In: Bennett PB, Elliott DH, eds. The physiology and medicine of diving and compressed air work. London: Baillière, Tindall & Cassell.